How to Use this Web Log

1. Browse through articles by clicking on "Older Posts" below each article in the center column.
2. Search through the Blog Archive at the lower right-hand column.

3. Read Editor's articles to the right.
4. Get Technical help in the lower left hand column.
5. Efficiency and low-waste strategies in the lower right column.

Tuesday, November 21, 2017

Peace, equality and prosperity all depend on affordable clean energy, study shows

The UN's 17 Sustainable Development Goals are aimed at achieving equality, securing global peace and ending extreme poverty -- an ambitious agenda that will require a wide-range of conditions to be met. But one requirement lies at the center of most of the SDGs: that people have access to clean, affordable energy, says a new study with Francesco Fuso Nerini, Assistant Professor in the Division of Energy Systems Analysis at KTH Royal Institute of Technology, as lead author.

By analyzing the SDGs and their related targets, researchers found that access to clean and affordable energy is at the heart of around two-thirds of these targets -- ranging from ending discrimination against women to ending poverty.
The paper, published in Nature Energy, found that energy is central in achieving a peaceful and sustainable future.
"Access to food, clean water, sanitation, education, technology and healthcare are all underpinned by affordable and clean energy," says Fuso Nerini. "For example, electricity access is needed in schools and homes in order for all girls and boys to have access to free, equitable and good-quality primary and secondary education."
As UN member nations have committed to implement the goals by 2030, the research suggests that far greater emphasis should be placed on considering cross-sectoral dynamics between energy, water, food, gender and education when considering wider public policy goals.
The research was undertaken by the University College London Energy & Development group, a group of researchers and academics at UCL who work on issues related to energy in low and middle-income countries.
Yacob Mulugetta, paper coauthor and Professor of Energy and Development Policy at University College London, said:
"This paper helps us think through the place of energy across our economic and social systems, and by extension, helps us understand our relationship with our environment. By exploring these interdependencies, this paper argues that the transition to a clean energy future cannot be separated from the important goal of building a fairer and more just society."
Since its founding in 1827, KTH Royal Institute of Technology in Stockholm has grown to become one of Europe's leading technical and engineering universities, as well as a key centre of intellectual talent and innovation. KTH is Sweden's largest technical research and learning institution and home to students, researchers and faculty from around the world dedicated to advancing knowledge.
Story Source:
Materials provided by KTH The Royal Institute of Technology.

Journal Reference:
  1. Francesco Fuso Nerini, Julia Tomei, Long Seng To, Iwona Bisaga, Priti Parikh, Mairi Black, Aiduan Borrion, Catalina Spataru, Vanesa Castán Broto, Gabrial Anandarajah, Ben Milligan, Yacob Mulugetta. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nature Energy, 2017; DOI: 10.1038/s41560-017-0036-5 



 

Thursday, August 24, 2017

100% Renewables by 2050 can be achieved

https://www.sciencedaily.com/releases/2017/08/170823121339.htm

How 139 countries could be powered by 100 percent wind, water, and solar energy by 2050

Date:
August 23, 2017
Source:
Cell Press
Summary:
The latest roadmap to a 100 percent renewable energy future outlines infrastructure changes that 139 countries can make to be entirely powered by wind, water, and sunlight by 2050 after electrification of all energy sectors. Such a transition could mean less worldwide energy consumption due to the efficiency of clean, renewable electricity; and a net increase of over 24 million long-term jobs. 
 
This infographic represents the roadmaps developed by Jacobson et al for 139 countries to use 100 percent wind-water-solar in all energy sectors by 2050.
Credit: The Solutions Project
The latest roadmap to a 100% renewable energy future from Stanford's Mark Z. Jacobson and 26 colleagues is the most specific global vision yet, outlining infrastructure changes that 139 countries can make to be entirely powered by wind, water, and sunlight by 2050 after electrification of all energy sectors. Such a transition could mean less worldwide energy consumption due to the efficiency of clean, renewable electricity; a net increase of over 24 million long-term jobs; an annual decrease in 4-7 million air pollution deaths per year; stabilization of energy prices; and annual savings of over $20 trillion in health and climate costs. The work appears August 23 in the journal Joule, Cell Press's new publication focused on sustainable energy.
The challenge of moving the world toward a low-carbon future in time to avoid exacerbating global warming and to create energy self-sufficient countries is one of the greatest of our time. The roadmaps developed by Jacobson's group provide one possible endpoint. For each of the 139 nations, they assess the raw renewable energy resources available to each country, the number of wind, water, and solar energy generators needed to be 80% renewable by 2030 and 100% by 2050, how much land and rooftop area these power sources would require (only around 1% of total available, with most of this open space between wind turbines that can be used for multiple purposes), and how this approach would reduce energy demand and cost compared with a business-as-usual scenario.
"Both individuals and governments can lead this change. Policymakers don't usually want to commit to doing something unless there is some reasonable science that can show it is possible, and that is what we are trying to do," says Jacobson, director of Stanford University's Atmosphere and Energy Program and co-founder of the Solutions Project, a U.S. non-profit educating the public and policymakers about a transition to 100% clean, renewable energy. "There are other scenarios. We are not saying that there is only one way we can do this, but having a scenario gives people direction."
The analyses specifically examined each country's electricity, transportation, heating/cooling, industrial, and agriculture/forestry/fishing sectors. Of the 139 countries -- selected because they were countries for which data were publically available from the International Energy Agency and collectively emit over 99% of all carbon dioxide worldwide -- the places the study showed that had a greater share of land per population (e.g., the United States, China, the European Union) are projected to have the easiest time making the transition to 100% wind, water, and solar. Another learning was that the most difficult places to transition may be highly populated, very small countries surrounded by lots of ocean, such as Singapore, which may require an investment in offshore solar to convert fully.
As a result of a transition, the roadmaps predict a number of collateral benefits. For example, by eliminating oil, gas, and uranium use, the energy associated with mining, transporting and refining these fuels is also eliminated, reducing international power demand by around 13%. Because electricity is more efficient than burning fossil fuels, demand should go down another 23%. The changes in infrastructure would also mean that countries wouldn't need to depend on one another for fossil fuels, reducing the frequency of international conflict over energy. Finally, communities currently living in energy deserts would have access to abundant clean, renewable power.
"Aside from eliminating emissions and avoiding 1.5 degrees Celsius global warming and beginning the process of letting carbon dioxide drain from the Earth's atmosphere, transitioning eliminates 4-7 million air pollution deaths each year and creates over 24 million long-term, full-time jobs by these plans," Jacobson says. "What is different between this study and other studies that have proposed solutions is that we are trying to examine not only the climate benefits of reducing carbon but also the air pollution benefits, job benefits, and cost benefits"
The Joule paper is an expansion of 2015 roadmaps to transition each of the 50 United States to 100% clean, renewable energy and an analysis of whether the electric grid can stay stable upon such a transition. Not only does this new study cover nearly the entire world, there are also improved calculations on the availability of rooftop solar energy, renewable energy resources, and jobs created versus lost.
The 100% clean, renewable energy goal has been criticized by some for focusing only on wind, water, and solar energy and excluding nuclear power, "clean coal," and biofuels. However, the researchers intentionally exclude nuclear power because of its 10-19 years between planning and operation, its high cost, and the acknowledged meltdown, weapons proliferation, and waste risks. "Clean coal" and biofuels are neglected because they both cause heavy air pollution, which Jacobson and coworkers are trying to eliminate, and emit over 50 times more carbon per unit of energy than wind, water, or solar power.
The 100% wind, water, solar studies have also been questioned for depending on some technologies such as underground heat storage in rocks, which exists only in a few places, and the proposed use of electric and hydrogen fuel cell aircraft, which exist only in small planes at this time. Jacobson counters that underground heat storage is not required but certainly a viable option since it is similar to district heating, which provides 60% of Denmark's heat. He also says that space shuttles and rockets have been propelled with hydrogen, and aircraft companies are now investing in electric airplanes. Wind, water, and solar can also face daily and seasonal fluctuation, making it possible that they could miss large demands for energy, but the new study refers to a new paper that suggests these stability concerns can be addressed in several ways.
These analyses have also been criticized for the massive investment it would take to move a country to the desired goal. Jacobson says that the overall cost to society (the energy, health, and climate cost) of the proposed system is one-fourth of that of the current fossil fuel system. In terms of upfront costs, most of these would be needed in any case to replace existing energy, and the rest is an investment that far more than pays itself off over time by nearly eliminating health and climate costs.
"It appears we can achieve the enormous social benefits of a zero-emission energy system at essentially no extra cost," says co-author Mark Delucchi, a research scientist at the Institute of Transportation Studies, University of California, Berkeley. "Our findings suggest that the benefits are so great that we should accelerate the transition to wind, water, and solar, as fast as possible, by retiring fossil-fuel systems early wherever we can."
"This paper helps push forward a conversation within and between the scientific, policy, and business communities about how to envision and plan for a decarbonized economy," writes Mark Dyson of Rocky Mountain Institute, in an accompanying preview of the paper. "The scientific community's growing body of work on global low-carbon energy transition pathways provides robust evidence that such a transition can be accomplished, and a growing understanding of the specific levers that need to be pulled to do so. Jacobson et al.'s present study provides sharper focus on one scenario, and refines a set of priorities for near-term action to enable it."
Story Source:
Materials provided by Cell Press. Note: Content may be edited for style and length.

Journal References:
  1. Jacobson et al. 100% Clean and Renewable Wind, Water, and Sunlight (WWS) All-Sector Energy Roadmaps for 139 Countries of the World. Joule, 2017 DOI: 10.1016/j.joule.2017.07.005
  2. Mark Z. Jacobson, Mark A. Delucchi, Guillaume Bazouin, Zack A. F. Bauer, Christa C. Heavey, Emma Fisher, Sean B. Morris, Diniana J. Y. Piekutowski, Taylor A. Vencill, Tim W. Yeskoo. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ. Sci., 2015; 8 (7): 2093 DOI: 10.1039/C5EE01283J
  3. Mark Z. Jacobson, Mark A. Delucchi, Mary A. Cameron, Bethany A. Frew. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proceedings of the National Academy of Sciences, 2015; 112 (49): 15060 DOI: 10.1073/pnas.1510028112

 

Wednesday, January 4, 2017

https://www.sciencedaily.com/releases/2017/01/170103152452.htm 

Tenfold jump in green tech needed to meet global emissions targets

Green innovations must be developed and spread globally 10 times faster than in the past if we are to limit warming to below the Paris Agreement's 2 degrees C target

Date:
January 3, 2017
Source:
Duke University
Summary:
The global spread of green technologies must quicken significantly to avoid future rebounds in climate-warming emissions, a new study shows. Based on the new calculations, the Paris Agreement's warming target of 2 degrees C won't be met unless clean technologies are developed and implemented at rates 10 times faster than in the past. Radically new strategies to implement technological advances are needed.
Share:
FULL STORY

Models of future CO2 emissions and temperature changes show the Paris Agreement's warming target of 2oC won't be met unless clean technologies are developed and implemented at rates 10 times faster than in the past to avoid future CO2 emissions.
Credit: Duke University
The global spread of green technologies must quicken significantly to avoid future rebounds in greenhouse gas emissions, a new Duke University study shows.
"Based on our calculations, we won't meet the climate warming goals set by the Paris Agreement unless we speed up the spread of clean technology by a full order of magnitude, or about ten times faster than in the past," said Gabriele Manoli, a former postdoctoral associate at Duke's Nicholas School of the Environment, who led the study.
"Radically new strategies to implement technological advances on a global scale and at unprecedented rates are needed if current emissions goals are to be achieved," Manoli said.
The study used delayed differential equations to calculate the pace at which global per-capita emissions of carbon dioxide have increased since the Second Industrial Revolution -- a period of rapid industrialization at the end of the 19th century and start of the 20th. The researchers then compared this pace to the speed of new innovations in low-carbon-emitting technologies.
Using these historical trends coupled with projections of future global population growth, Manoli and his colleagues were able to estimate the likely pace of future emissions increases and also determine the speed at which climate-friendly technological innovation and implementation must occur to hold warming below the Paris Agreement's 2o C target.
"It's no longer enough to have emissions-reducing technologies," he said. "We must scale them up and spread them globally at unprecedented speeds."
The researchers published their peer-reviewed findings December 29 in the open-access journal Earth's Future.
The analysis shows that per-capita CO2 emissions have increased about 100 percent every 60 years -- typically in big jumps -- since the Second Industrial Revolution. This "punctuated growth" has occurred largely because of time lags in the spread of emission-curbing technological advances, which are compounded by the effects of rapid population growth.
"Sometimes these lags are technical in nature, but -- as recent history amply demonstrates -- they also can be caused by political or economic barriers," Manoli explained. "Whatever the cause, our quantification of the delays historically associated with such challenges shows that a tenfold acceleration in the spread of green technologies is now necessary to cause some delay in the Doomsday Clock."
Manoli, who is now on the research staff at ETH Zurich's Institute of Environmental Engineering, conducted the new study with Gabriel G. Katul, the Theodore S. Coile Professor of Hydrology and Micrometeorology, and Marco Marani, professor of ecohydrology. Katul and Marani are faculty members at Duke's Nicholas School of the Environment with secondary appointments in the Department of Civil and Environmental Engineering at Duke's Pratt School of Engineering.

Story Source:
Materials provided by Duke University. Note: Content may be edited for style and length.

Journal Reference:
  1. Gabriele Manoli, Gabriel G. Katul, Marco Marani. Delay-induced Rebounds in CO2 Emissions and Critical Time-Scales to Meet Global Warming Targets. Earth's Future, 2016 DOI: 10.1002/eft2.2016EF000431