How to Use this Web Log

1. Browse through articles by clicking on "Older Posts" below each article in the center column.
2. Search through the Blog Archive at the lower right-hand column.

3. Read Editor's articles to the right.
4. Get Technical help in the lower left hand column.
5. Efficiency and low-waste strategies in the lower right column.

Saturday, January 19, 2013

Huge Solar Breakthrough!!!

 http://www.sciencedaily.com/releases/2013/01/130118064733.htm

Thin Film Solar Cells: New World Record for Solar Cell Efficiency

Jan. 18, 2013 — In a remarkable feat, scientists at Empa, the Swiss Federal Laboratories for Materials Science and Technology, have developed thin film solar cells on flexible polymer foils with a new record efficiency of 20.4% for converting sunlight into electricity. The cells are based on CIGS semiconducting material (copper indium gallium (di)selenide) known for its potential to provide cost-effective solar electricity. The technology is currently awaiting scale-up for industrial applications.
To make solar electricity affordable on a large scale, scientists and engineers the world over have long been trying to develop a low-cost solar cell, which is both highly efficient and easy to manufacture with high throughput. Now a team at Empa's Laboratory for Thin Film and Photovoltaics, led by Ayodhya N. Tiwari, has made (yet another) leap ahead. They achieved a record 20.4% energy conversion efficiency for thin film CIGS solar cells on flexible polymer substrates, a massive improvement over the previous record of 18.7% achieved by the same team in May 2011. Tiwari’s team has been investigating and developing various thin film solar cell technologies for some time. Over the years the laboratory has boosted the photovoltaic conversion efficiency of flexible CIGS solar cells time and again, from 12.8% in 1999 – the group’s first world record – to 14.1% in 2005, 17.6% in 2010 and 18.7% in 2011.
Closing the efficiency gap to silicon wafer cells
The latest in the series of records has been achieved, thanks to innovative ideas and excellent team work in the lab, especially by PhD students Adrian Chirila and Fabian Pianezzi. The team has succeeded in modifying the properties of the CIGS layer, grown at low temperatures, which absorbs light and contributes to the photo-current in solar cells. The cell efficiency value was independently certified by the Fraunhofer Institute for Solar Energy Systems (ISE) in Freiburg, Germany. What’s more, Empa’s new record efficiency for flexible solar cells now even exceeds the record value of 20.3% for CIGS solar cells on glass substrates – and equals the highest efficiencies for polycrystalline silicon wafer-based solar cells. "We have now – finally – managed to close the "efficiency gap" to solar cells based on polycrystalline silicon wafers or CIGS thin film cells on glass", says Tiwari.
Thin film, lightweight and flexible high-performance solar modules are attractive for numerous applications such as solar farms, roofs and facades of buildings, automobiles and portable electronics and can be produced using continuous roll-to-roll manufacturing processes that offer further cost reductions compared to standard silicon technologies. In other words, they have the potential to enable low-cost solar electricity in the near future. “The series of record efficiencies for flexible CIGS solar cells developed at Empa demonstrates that thin film solar cells can match the excellent performance of polycrystalline silicon cells. Now it is time for the next step, the scale-up of the technology to cover large areas in a cost-efficient roll-to-roll manufacturing process with an industrial partner”, says Gian-Luca Bona the Director of Empa. For this purpose, Empa is collaborating with Flisom, a start-up company involved in industrialization of flexible CIGS solar cells.
The research work has been supported over the years by the Swiss National Science Foundation (SNSF), the Commission for Technology and Innovation (CTI), the Swiss Federal Office of Energy (SFOE) and the EU Framework Programmes.
Story Source:
The above story is reprinted from materials provided by Empa.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Friday, January 18, 2013

Solar (PV) Energy For Cars Better Than BioFuels

 http://www.eurekalert.org/pub_releases/2013-01/uoc--pbb011613.php

Photovoltaics beat biofuels at converting sun's energy to miles driven

New study shows solar power is not only better in terms of energy efficiency, land use, and greenhouse gas emissions -- but cost competitive, too

In 2005, President George W. Bush and American corn farmers saw corn ethanol as a promising fossil fuel substitute that would reduce both American dependence on foreign oil and greenhouse gas emissions. Accordingly, the 2005 energy bill mandated that 4 billion gallons of renewable fuel be added to the gasoline supply in 2006. That rose to 4.7 billion gallons in 2007 and 7.5 billion in 2012.
Since then, life cycle assessments (LCAs) have shown that corn ethanol has modest if any effect on reducing CO2 emissions and may actually increase them, while posing a threat to natural habitats and food supplies, as food stocks are turned to fuel and marginal lands are put under the plough to keep up with demand. In 2010, fuel ethanol consumed 40 percent of U.S. corn production, and 2012 prices are at record highs. Since the U.S. also accounts for 40 percent of the world's corn, U.S. ethanol production has affected corn prices around the planet.
As electric vehicles (EVs) increasingly enter the market and charging stations are built to serve them, EVs are competing with alternative-fuel vehicles. Using electricity generated by coal-fired plants to power the cars defeats the purpose to some extent, but what if the energy comes from the ultimate clean and renewable source – the sun itself? How would that compete with ethanol in terms of land use, life-cycle emissions, and even cost?
The question, says UCSB Bren School of Environmental Science & Management Professor and LCA expert Roland Geyer, is which makes more sense, growing fuel crops to supply alternative-fuel vehicles with ethanol and other biofuels or using photovoltaics (PV) to directly power battery electric vehicles (BEV)?
"The energy source for biofuels is the sun, through photosynthesis," he says. "The energy source for solar power is also the sun. Which is better?"
To find out, Geyer joined former BrenSchool researcher David Stoms and James Kallaos, of the Norwegian University of Science and Technology, to model the relative efficiencies of the technologies at converting a given amount of sunlight to miles driven.
The results, which appear in a paper titled "Spatially Explicit Life Cycle Assessment of Sun-to-Wheels Transportation Pathways in the U.S." and published in the Dec. 26 issue of the journal Environmental Science & Technology, showed photovoltaics (PV) to be much more efficient than biomass at turning sunlight into energy to fuel a car.
"PV is orders of magnitude more efficient than biofuels pathways in terms of land use – 30, 50, even 200 times more efficient – depending on the specific crop and local conditions," says Geyer. "You get the same amount of energy using much less land, and PV doesn't require farm land."
The researchers examined three ways of using sunlight to power cars: a) the traditional method of converting corn or other plants to ethanol; b) converting energy crops into electricity for BEVs rather than producing ethanol; and C) using PVs to convert sunlight directly into electricity for BEVs.
Because land-use decisions are local, Geyer explains, he and his colleagues examined five prominent "sun-to-wheels" energy conversion pathways – ethanol from corn or switchgrass for internal combustion vehicles, electricity from corn or switchgrass for BEVs, and PV electricity for BEVs – for every county in the contiguous United States.
Focusing the LCA on three key impacts – direct land use, life cycle greenhouse gas (GHG) emissions, and fossil fuel requirements – the researchers identified PV electricity for battery electric vehicles as the superior sun-to-wheels conversion method.
"Even the most efficient biomass-based pathway…requires 29 times more land than the PV-based alternative in the same locations," the authors write. "PV BEV systems also have the lowest life-cycle GHG emissions throughout the U.S. and the lowest fossil fuel inputs, except in locations that have very high hypothetical switchgrass yields of 16 or more tons per hectare."
PV conversion also has lower GHG emissions throughout the life cycle than do cellulosic biofuels, even in the most optimistic scenario for the latter. "The bottleneck for biofuels is photosynthesis," Geyer says. "It's at best 1-percent efficient at converting sunlight to crop, while today's thin-film PV is at least 10-percent efficient at converting sunlight to electricity.
Finally, while cost was not a key component of the study, Geyer says, "The cost of solar power is dropping, and our quick calculations suggests that with the federal tax credit, electric vehicles are already competitive."
What does this mean for the future?
“What this research taught me is that biomass is simply not a good way of harvesting sunlight,” Geyer explains. “Not because of immature technologies but because of a fundamental physical constraint, the inefficiency of photosynthesis. This fundamental disadvantage will just get worse as PV-powered EVs are getting cheaper and more efficient in the years to come. A search for a silver bullet is under way in energy research, be it artificial photosynthesis or third-generation biofuels. But if there is a silver bullet, I think it is photovoltaics.”